- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ade, P. A. (2)
-
Ahmed, Z. (2)
-
Amiri, M. (2)
-
Barkats, D. (2)
-
Beck, D. (2)
-
Bischoff, C. A. (2)
-
Bock, J. J. (2)
-
Boenish, H. (2)
-
Bullock, E. (2)
-
Buza, V. (2)
-
Connors, J. (2)
-
Cornelison, J. (2)
-
Crumrine, M. (2)
-
Cukierman, A. (2)
-
Denison, E. V. (2)
-
Dierickx, M. (2)
-
Duband, L. (2)
-
Eiben, M. (2)
-
Fatigoni, S. (2)
-
Filippini, J. P. (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present estimates of line-of-sight distortion fields derived from the 95 and 150 GHz data taken by BICEP2, BICEP3, and the Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum A L ϕ ϕ = 0.95 ± 0.20 . We constrain polarization rotation, expressed as the coupling constant of a Chern–Simons electromagnetic term g a γ ≤ 2.6 × 10 −2 / H I , where H I is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 Mpc B 1Mpc ≤ 6.6 nG at 95 GHz. We constrain the rms of optical depth fluctuations in a simple “crinkly surface” model of patchy reionization, finding A τ < 0.19 (2 σ ) for the coherence scale of L c = 100. We show that all of the distortion fields of the 95 and 150 GHz polarization maps are consistent with simulations including lensed ΛCDM, dust, and noise, with no evidence for instrumental systematics. In some cases, the EB and TB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spurious B -modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage.more » « less
-
Ade, P. A.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R. Basu; Bischoff, C. A.; Beck, D.; Bock, J. J.; Boenish, H.; Bullock, E.; et al (, The Astrophysical Journal)Abstract We report on the design and performance of the B icep3 instrument and its first three-year data set collected from 2016 to 2018. B icep3 is a 52 cm aperture refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95 GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing ∼10× higher optical throughput compared to the Keck design. B icep3 achieved instrument noise equivalent temperatures of 9.2, 6.8, and 7.1 μ K CMB s and reached Stokes Q and U map depths of 5.9, 4.4, and 4.4 μ K arcmin in 2016, 2017, and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8 μ K arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95 GHz.more » « less
An official website of the United States government
